Research News

M.S. Thesis
Hüseyin Hilmi Kılınç, A Robust Approach for Predicting Mutation Effects on Transcription Factor Binding: Insights from Mutational Signatures in 560 Breast Cancer Samples

Somatic mutations in non-coding regions can disrupt transcription factor (TF)-DNA interactions, affecting gene regulation and contributing to cancer. This thesis introduces an in silico pipeline to assess the impact of these mutations on TF binding affinities. Using k-mer-based linear regression models trained on ChIP-seq and PBM data for 403 TFs, we analyzed somatic mutations in 560 breast cancer samples. Predicted TF binding changes were classified as gain or loss of function and linked to oncogene and tumor suppressor dysregulation using enhancer-target gene maps. Signature-specific and statistical analyses highlight distinct patterns, providing insights into the regulatory role of mutations in cancer.

Date: 07.01.2025 / 10:00 Place: A-212

Ph.D. Thesis
Tayfun Eylen, Data-Driven Alarm Parameter Optimization

The thesis discusses optimizing alarm management systems in manufacturing. It introduces a novel data-driven method using the Tennessee Eastman Process to enhance alarm parameters, aiming to reduce missed critical alarms and improve process safety. Key contributions include associating disturbances with alarms, creating an alarm simulation platform, and optimizing alarm parameters. The study highlights the trade-off between alarm reaction delay and the number of alarms, emphasizing the importance of timely operator responses.

Date: 10.01.2025 / 14:45 Place: II-06

M.S. Thesis
Özge Köktürk, Context-Invariant Autoencoder Training via Unsupervised Domain Adaptation

This thesis introduces a methodology for training context-invariant autoencoders using unsupervised domain adaptation to enhance model generalizability under varying contexts. By employing domain-adversarial training and data augmentation, the approach extracts domain-invariant representations while disregarding contextual variations. Experiments utilize the CARLA simulator, generating diverse image datasets across weather conditions and times of day. The proposed framework improves reconstruction loss and feature robustness, demonstrating its efficacy in achieving reliable machine learning performance in dynamic environments. The study emphasizes the utility of domain adaptation techniques in addressing domain shifts, offering a foundation for robust applications in autonomous systems.

Date: 06.01.2025 / 14:30 Place: A-212

M.S. Thesis
Burak Büyükyaprak, Investigating The Semantic Similarity Effect On Delayed Free Recall Using Word Embeddings

The thesis study "Investigating The Semantic Similarity Effect on Delayed Free Recall Using Word Embeddings," investigates how the semantic proximity effect, alongside the temporal proximity effect on delayed free recall. The current study uses fastText and word2vec for methodological purposes to outline the underlying cognitive mechanisms leading to the process of memory retrieval. By investigating the interplay between word meanings and memory performance, this study contributes to Cognitive Science and Psychology specifically in investigating language processing and human memory.

Date: 10.01.2025 / 13:00 Place: B-116

M.S. Thesis
Mustafa Zemin, Deepfake Detection System Through Collective Intelligence in Public Blockchain Environment

This thesis presents a Deepfake Detection System that leverages public blockchain and collective intelligence to address the growing threat of digital misinformation. Implemented on the Ethereum Sepolia testnet, the system combines human collaboration and decentralized technology to detect deepfakes independent of their generation methods. Using smart contracts ensure transparency, fairness, and scalability by automating voting processes and adjusting user credibility based on voting accuracy. The system builds trust and accuracy by normalizing user influence and promoting open participation. This study demonstrates the system’s robustness, scalability, and ability to combat misinformation, while laying the foundation for blockchain-based verification in other fields.

Date: 07.01.2025 / 14:00 Place: A-212