Announcements
Research News
Bu çalışmada EnSCAN çerçevesini tanıtarak, farklı genotipleme platformlarında seçilen varyantları konsolide eden ve bu varyantları öncelikli aday lokus olarak sıralayarak her bir genotiplendirme platformundaki makine öğrenmesi sonuçlarından elde edilen önsel bilgiyi iyileştiren ve birleştiren yenilikçi bir algoritma önerilmektedir. Önerilen EnSCAN algoritması, varyatların kromozomal konumlarını sitogenetik bantlara göre haritalama ve çiftler arasındaki yakınlıkları ile çoklu model üzerinde Random Forest doğrulamalarını kullanarak SNV'leri ve Alzheimer Hastalığı için ayırt edici genleri önceliklendirmeyi sağlar. EnSCAN algoritmasındaki skorlama yöntemi ölçeklenebilir olup, herhangi bir çoklu platform genotipleme çalışmasına uygulanabilir durumdadır. Bu çalışmada EnSCAN skorlama algoritmasının, üç GWAS veri seti arasında LOAD ile ilişkili aday ayırt edici varyantlarını nasıl önceliklendirdiği sunulmaktadır.
Tarih: 06.09.2024 / 16:00 Yer: B-116
Açık kaynak kodlu yazılım projelerinin gelişen dünyasında, etkili sorun yönetimi, proje başarısını sürdürmenin temel bir unsuru olmaya devam etmektedir. Sorun raporları, yazılım ürünleri ile ilgili hataları bildirmek, yeni özellikler talep etmek veya sorular sormak amacıyla oluşturuldukları için değerli bilgiler sağlar. Kalite açısından büyük ölçüde farklılık gösteren çok sayıda sorun raporu, çalışmaları önceliklendirmek ve kaynakları etkili bir şekilde yönetmek için doğru sorun sınıflandırma mekanizmalarını gerektirir. Doğru şekilde atanan sorun etiketleri, etkili proje yönetimi ve sorun yönetimini geliştirmek amacıyla yapılan araştırmaların güvenilirliği açısından kritik öneme sahiptir, çünkü bu araştırmalar genellikle atanmış olan sorun etiketlerini gerçek referans değer olarak varsayar. Bu çalışma, sorun yönetim süreçlerini iyileştirmek için açık kaynak kodlu yazılım geliştirme projelerindeki atanan sorun etiketlerinin güvenilirliğini değerlendirmeyi amaçlamaktadır. Araştırma, GitHub’da bulunan açık kaynak kodlu yazılım geliştirme projelerinden iki sorun raporu veri kümesi toplanmasını içermektedir. Sorun etiketi sınıflandırması kapsamında en gelişkin büyük dil modelleri ile deneyler gerçekleştirilmiştir. Ayrıca, atanan sorun etiketlerinin, sorun içeriği açısından ilgisini değerlendirmek için nitel bir analiz yapılmıştır. Sorun raporları üzerinde gerçekleştirilen deneysel çalışma, atanan etiketler ile sorunların asıl içeriği arasında önemli bir uyumsuzluk olduğunu ortaya koymuştur. Çalışma ayrıca, en gelişkin büyük dil modellerinin sorun etiketlerini sınıflandırmadaki etkinliğini göstererek açık kaynak kodlu yazılım geliştirme projelerinde sorun etiketlerinin güvenilirliğine ilişkin endişeleri vurgulamıştır.
Tarih: 06.09.2024 / 11:00 Yer: A-108
Görsel soru cevaplama (VQA), hem görsel hem de dil içeriğini anlamayı, akıl yürütmeyi ve çıkarım yapmayı gerektiren bütüncül bir yapay zeka görevi olarak tanımlanır. Son yıllarda sinirsel mimarilerdeki gelişmelere rağmen, sıfır-atış VQA, gelişmiş genelleme ve akıl yürütme becerileri gerektirdiğinden önemli bir zorluk olmaya devam etmektedir. Bu tez, yeni Büyük Dil Modellerinin (LLM) sıfır-atış görsel soru cevaplamadaki yeteneklerini keşfetmeyi amaçlamaktadır. Spesifik olarak, CogVLM, GPT-4 ve GPT-4o gibi çok modlu LLMlerin performansları, akıl yürütme yeteneğini ölçmek amacıyla çeşitli sorular içeren GQA veri setinde değerlendirilmiştir. VQA için, LLMlerden yararlanan ve ara adım olarak görüntü altyazılamayı entegre eden yeni bir çerçeve önerilmiştir. Ayrıca, farklı istem tekniklerinin VQA performansı üzerindeki etkisi incelenmiştir. Değerlendirmeler, anlamsal ve yapısal olarak farklılık gösteren sorular üzerinde gerçekleştirilmiştir. Bulgular, sıfır-atış koşullarında VQA performansını artırmak için görüntü altyazıları ve optimize edilmiş istemlerin kullanım potansiyelini vurgulamaktadır.
Tarih: 04.09.2024 / 13:30 Yer: A-212
Bu araştırma, Makine Öğrenimi (ML) projelerindeki Teknik Borç (TD) olgusunun çok yönlü doğasını ele almaktadır. ML tabanlı projeler ile geleneksel yazılım projeleri arasında yapısal farklılıklar olması sebebiyle teknik borç olgusunun yeniden ele alınması ihtiyacı doğmuştur. Çalışma, TD’nin ML projelerinde nasıl ortaya çıktığını, kök nedenleri, etkileri, geçici çözümleri ve ideal çözümleri sistematik olarak incelemektedir. ML'ye özgü TD, endüstri profesyonelleriyle yapılan yarı yapılandırılmış görüşmelerin kodlama analizi yoluyla kategorize edilmiştir. Bulgular, akademik uzmanlar tarafından birden çok iterasyonda değerlendirilmiştir. Bu çalışma, ML bağlamında teknik borcun özgün doğasını vurgulayarak ve yönetimi için yapılandırılmış yaklaşımlar önererek literatüre katkıda bulunmaktadır.
Tarih: 06.09.2024 / 09:30 Yer: A-212
Bu tez, TED-MDB derlemi üzerinde yoğunlaşarak söylem ilişkilerinin gerçekleştirilmesindeki diller arası farklılıkları araştırmaktadır. Paralel derlemlerde söylem ilişki işaretlemelerini hizalamak için bir yöntem geliştirerek, söylem ilişkilerinin gerçekleştirilme biçimleri, anlamsal kaymalar, ve cümle içi-arası kodlama kalıplarındaki varyasyonları incelemektedir. Temel bulgular, söylem ilişkilerini hizalamanın önemini vurgulamakta ve derlem bağlayıcılarının çevrilmesindeki farklılıkları ortaya koymaktadır. Ayrıca, bu çalışma, pragmatik çalışmaları ve doğal dil işleme sistemlerini destekleyen, hizalanmış veriden iki dilli sözlük türetme yöntemi de geliştirmektedir. Gelecekteki çalışmalar, hizalanmış derlem ilişkileri verisini daha iyi erişilebilirlik ve birlikte işlerlik için Linked Language Open Data (LLOD) standartlarına uyarlamayı içermektedir.
Tarih: 04.09.2024 / 10:00 Yer: A-212