Research News

M.S. Thesis
Tuğçe Gölgeli, A Case Study on The Effect of Route Characteristics on Decision Making in the Sport of Orienteering

When choosing a route in orienteering, it is important to combine physical endurance with mental processes and the ability to adapt to the environment and optimize them correctly. In this study, the components affecting route selection were investigated. For this purpose, the data obtained from athletes through GPS containing watches were examined with quantitative and qualitative research methods. Then, a model based on spatial data was created to find the shortest paths and to compare the compatibility with the behaviors of athletes, and the relation of route selection decisions with some specified cognitive paradigms was questioned.

Date: 30.01.2020 / 10:00 Place: A-108

M.S. Thesis
Ege Erdem, 3D Perceptual Soundfield Reconstruction via Sound Fieldextrapolation

Perceptual sound field reconstruction (PSR) is a spatial audio recording and repro-duction method based on the application of stereophonic panning laws in microphone array design. 

Date: 08.01.2020 Place: SPARG LAB. (Modsimmer Building)

Ph.D. Thesis
Davut Çavdar, Design of a Context Aware Security Model for Preventing Relay Attacks Using Nfc Enabled Mobile Devices

In this thesis, we offer a context-aware security model extending the role-based access control model in order to prevent relay attacks in NFC enabled mobile devices with both theoretical and practical approach. Within this study, we identify possible vulnerabilities and requirements then design the model. Parallel to conceptual design, we also developed a complete test-bed to deploy the model on it. Finally, we verified the model theoretically and practically.

Date: 27.01.2020 / 16:00 Place: Conference Hall-1

M.S. Thesis
Gökçe Abay, Biological Data Integration and Relation Prediction by Matrix Factorization

In this study, we propose to integrate large-scale gene/protein annotation data by using non-negative matrix factorization (NMF). Using NMF, the ultimate aim here is to predict the unknown binary relationships between these biological entities; and to represent these entities (i.e., proteins, functions and disease entries) as informative and non-redundant quantitative feature vectors (using the low-rank feature matrices generated by the factorization process), which can be used in diverse data mining and machine learning tasks in the future, such as the automated annotations of proteins or the construction of biological knowledge graphs.

Date: 30.01.2020 / 15:30 Place: A-212

M.S. Thesis
Fatma Cankara, Prediction of the Effects of Single Amino Acid Variations on Protein Functionality with Structural and Annotation Centric Modeling

Studies showed that single nucleotide variations that alter the protein sequence, structure and function are associated with many diseases in humans. However, the current rate of manually annotating reported nsSNPs cannot catch up with the rate of producing new sequencing data. To aid this process, automated computational approaches are being developed and applied on the unknown data. In this study, we propose a new methodology to collect and organize the information related to the effects of nsSNPs at the amino acid sequence level from various biological databases and to utilize this information in a supervised machine-learning based system to predict the function disrupting capacities of mutations with unknown consequences.

Date: 30.01.2020 / 14:00 Place: A-212