M.S. Thesis

M.S. Thesis

Burak Büyükyaprak, Investigating The Semantic Similarity Effect On Delayed Free Recall Using Word Embeddings

The thesis study "Investigating The Semantic Similarity Effect on Delayed Free Recall Using Word Embeddings," investigates how the semantic proximity effect, alongside the temporal proximity effect on delayed free recall. The current study uses fastText and word2vec for methodological purposes to outline the underlying cognitive mechanisms leading to the process of memory retrieval. By investigating the interplay between word meanings and memory performance, this study contributes to Cognitive Science and Psychology specifically in investigating language processing and human memory.

Date: 10.01.2025 / 13:00 Place: B-116

English

Mustafa Zemin, Deepfake Detection System Through Collective Intelligence in Public Blockchain Environment

This thesis presents a Deepfake Detection System that leverages public blockchain and collective intelligence to address the growing threat of digital misinformation. Implemented on the Ethereum Sepolia testnet, the system combines human collaboration and decentralized technology to detect deepfakes independent of their generation methods. Using smart contracts ensure transparency, fairness, and scalability by automating voting processes and adjusting user credibility based on voting accuracy. The system builds trust and accuracy by normalizing user influence and promoting open participation. This study demonstrates the system’s robustness, scalability, and ability to combat misinformation, while laying the foundation for blockchain-based verification in other fields.

Date: 07.01.2025 / 14:00 Place: A-212

English

Barış Özcan, Adaptive System for Dynamic Handling of Concept Drift: Detection, Modeling, and Weighted Ensemble Predictions

This thesis addresses the challenge of concept drift in machine learning, where evolving data patterns reduce model relevance and performance. This research proposes a dynamic system that detects and adapts to new concepts by developing tailored models for each concept. It includes leveraging ensemble strategies and mitigating class imbalances with synthetic data. By using detection techniques based on differences between datasets and performance metrics, and different prediction techniques that take account of the concept of the datasets that will be predicted this research aims to enhance model adaptability in dynamic environments, providing a comprehensive framework to tackle concept drift.

Date: 27.12.2024 / 14:00 Place: A-212

English

Kaan Karataş, Developing A Framework to Evaluate the Usability of Virtual and Mixed Reality Environments to Practice Model-Based Systems Engineering

This thesis aims to understand the applicability of virtual reality or mixed reality environments to perform model-based systems engineering and develop a prototype for a framework for such uses. By conducting user tests with people from systems engineering and interactive application and game development background, identifies the primary advantages and disadvantages of using these environments compared to desktop environment. The outcomes serve as a strong baseline for possible future research and established that the virtual reality or mixed reality environments can be suitable for model-based systems engineering.

Date: 26.11.2024 Place: A-212

English

Ümit Eronat, A Comparative Analysis of Various 3D Mesh Optimization Algorithms for Assessing Effectiveness on Sustaining Virtual Visual Illusion

This thesis presents a method of comparing the cost-effectiveness of 3D mesh simplification algorithms using the McGurk effect, where visual and auditory cues are combined to create an illusion. The study involves designing a human head mesh, animating mouth movements, and recording certain syllable sounds to produce a virtual scene. Using this virtual scene and applying three different mesh simplification algorithms on the animated head, a user study was conducted to test and measure the effectiveness of each algorithm for each different syllable in medium and high difficulty levels. Results highlight the balance between computational efficiency and perceptual accuracy, providing insights for 3D modeling and virtual reality applications.

Date: 29.11.2024 / 10:00 Place: A-212

English

Yasin Aksüt, An Analysis Of Kerberoasting Attack And Detection With Supervised Machine Learning Algorithms

Active Directory (AD) is one of the most widely used directory services today, playing a key role in organizing and managing network resources within an organization. A robust security strategy is crucial to prevent and detect AD attacks, which can be difficult to detect due to their blend in with normal network traffic. One such attack is the Kerberoasting attack, which exploits weaknesses in the Kerberos authentication protocol. To detect these attacks, supervised machine learning algorithms are being proposed. And also publicly available dataset to measure the efficiency of these algorithms for Kerberoasting attacks was created and shared.

Date: 22.11.2024 / 14:00 Place: A-108

English

İrem Selin Deniz, An Investigation of Issue Labeling in Open Source Software Projects Using Large Language Models

In the evolving landscape of open source software projects, effective issue management remains a pivotal aspect of sustaining project success. Issue reports provide valuable information as they are created for reporting bugs, requesting new features, or asking questions about a software product. The high number of issue reports, which vary widely in quality, requires accurate issue classification mechanisms to prioritize work and manage resources effectively. Properly assigned issue labels are crucial for effective project management and for the reliability of research conducted to improve issue management as they often assume the assigned issue labels as the ground truth. This study aims to assess the reliability of the assigned issue labels in open source software development projects to improve issue management processes. The research involves collecting two datasets of issue reports from open source software development projects hosted on GitHub. Experiments were conducted with the state-of-the-art large language models for issue label classification. Furthermore, a qualitative analysis was performed to evaluate the relevance of the assigned issue labels with respect to the content of the issues. The empirical study performed on issue reports revealed a significant mismatch between the assigned labels and the actual content of the issues. The study also demonstrated the effectiveness of the state-of-the-art large language models in classifying issue labels, highlighting concerns about the reliability of issue labels in open source software development projects.

Date: 06.09.2024 / 11:00 Place: A-108

English

Övgü Özdemir, Exploring the Capabilities of Large Language Models in Visual Question Answering: A New Approach Using Question-Driven Image Captions as Prompts

Visual Question Answering (VQA) is defined as an AI-complete task that requires understanding, reasoning, and inference of both visual and language content. Despite recent advancements in neural architectures, zero-shot VQA remains a significant challenge due to the demand for advanced generalization and reasoning skills. This thesis aims to explore the capabilities of recent Large Language Models (LLMs) in zero-shot VQA. Specifically, it evaluates the performance of multimodal LLMs such as CogVLM, GPT-4, and GPT-4o on the GQA dataset, which includes a diverse range of questions designed to assess reasoning abilities. A new framework for VQA is proposed, leveraging LLMs and integrating image captioning as an intermediate step. Additionally, the thesis examines the effect of different prompting techniques on VQA performance. Evaluations are conducted on questions that vary semantically and structurally. The findings highlight the potential of using image captions and optimized prompts to enhance VQA performance under zero-shot setting.

Date: 04.09.2024 / 13:30 Place: A-212

English

Pelin Dayan Akman, Analysis of Technical Debt in ML-based Software Development Projects

This research addresses the multifaceted nature of Technical Debt (TD) in Machine Learning (ML) projects, distinct from traditional software projects due to their probabilistic nature and data dependency. The study systematically examines how TD manifests across various dimensions in ML projects, identifying root causes, impacts, and band-aid solutions contributing to its persistence. ML-specific TD was categorized through thematic analysis of interviews with industry professionals. The findings were reviewed by academic experts in multiple iterations. This study fills a gap in the literature and offers practical insights for managing TD in ML contexts, as well as a TD-oriented structure for its assessment.

Date: 06.09.2024 / 09:30 Place: A-212

English

Engin Uzun, Simulating and Augmenting Turbulent Thermal Images for Deep Object Detection Models

Atmospheric turbulence, caused by factors such as temperature, wind speed, and humidity, leads to random fluctuations in the atmosphere's refractive index. This phenomenon degrades the image quality of long-range observation systems through geometric distortions and spatial-temporal varying blur. Turbulence can affect various imaging spectra, including visible and thermal bands. This thesis addresses the challenge of atmospheric turbulence in thermal imagery and its impact on object detection models. To tackle this challenge, we propose a data augmentation method that enhances the performance of object detectors by utilizing turbulent images with varying severity levels as training data. We generate training samples using a geometric turbulence simulator and use Geometric, Zernike-based, and P2S-based simulators to create the turbulent test sets, confirming the effectiveness of our augmentation method across different types of simulated turbulence. Our results demonstrate that this data augmentation approach significantly improves performance for both turbulent and non-turbulent thermal test images.

Date: 03.09.2024 / 13:30 Place: B-116

English

Pages

Subscribe to RSS - M.S. Thesis